Percent error (%)= 
Accepted value is true value.
Measured values is calculated value.
In the question given Accepted value (true value) = 63.2 cm
Given Measured(calculated values) = 63.1 cm , 63.0 cm , 63.7 cm
1) Percent error (%) for first measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.1 cm
Percent error (%)= 



Percent error = 0.158 %
2) Percent error (%) for second measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.0 cm
Percent error (%)= 



Percent error = 0.316 %
3) Percent error (%) for third measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.7 cm
Percent error (%)= 




Percent error = 0.791 %
Percent error for each measurement is :
63.1 cm = 0.158%
63.0 cm = 0.316%
63.7 cm = 0.791%
Answer:
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Explanation:
<u>Step 1: </u>Data given
The solution contains 0.036 M Cu2+ and 0.044 M Fe2+
Ksp (CuS) = 1.3 × 10-36
Ksp (FeS) = 6.3 × 10-18
Step 2: Calculate precipitate
CuS → Cu^2+ + S^2- Ksp= 1.3*10^-36
FeS → Fe^2+ + S^2- Ksp= 6.3*10^-18
Calculate the minimum of amount needed to form precipitates:
Q=Ksp
<u>For copper</u> we have: Ksp=[Cu2+]*[S2-]
Ksp (CuS) = 1.3*10^-36 = 0.036M *[S2-]
[S2-]= 3.61*10^-35 M
<u>For Iron</u> we have: Ksp=[Fe2+]*[S2-]
Ksp(FeS) = 6.3*10^-18 = 0.044M*[S2-]
[S2-]= 1.43*10^-16 M
CuS will form precipitates before FeS., because only 3.61*10^-35 M Sulfur Ions are needed for CuS. For FeS we need 1.43*10^-16 M Sulfur Ions which is much larger.
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Solid, Liquid, and Gas
Solid is the state in which matter maintains a fixed volume and shape; liquid is the state in which matter adapts to the shape of its container but varies only slightly in volume; and gas is the state in which matter expands to occupy the volume and shape of its container.
Your answer is C forms of the same element that differ in the number of neutrons in each atom because if the number of neutrons change the whole element changes.
Covalent bonds can be classified as nonpolar and polar covalent given the electronegativity difference between two atoms (ΔEN).
Nonpolar covalent bond electrons are shared equally between two atoms, polar covalent bond electrons are shared unequally, atoms have partial charges, ionic bond electrons are completely transferred to one atom, full charges present. Therefore, the greater the electronegativity difference, the greater the bond polarity. Let's determine the types of bonds present in the compounds and arrange the ones with polar covalent in order of increasing ΔEN. Sulfur and oxygen are both nonmetals so the substance is covalent. Sulfur has EN = 2.5 and oxygen has EN = 3.5. Since there is an electronegativity difference, the S−O bonds in the substance can be classified as polar covalent bonds.
Learn more about polar covalent bond here:
brainly.com/question/25150590
#SPJ4