Answer:
1. 75N
2. 67,983 J (=67.98 kJ)
Explanation:
1. Work = Force x Distance
we are given that Work = 1,500J and Distance = 20m
hence,
Work = Force x Distance
1,500 = Force x 20
Force = 1,500 ÷ 20 = 75N
2. Potential Energy, PE = mass x gravity x change in height
we are given that mass = 165 kg and change in height = 42m
assuming that gravity, g = 9.81 m/s²
Potential Energy, PE = mass x gravity x change in height
Potential Energy, PE = 165 x 9.81 x 42 = 67,983 J (=67.98 kJ)
Answer:
it is 2.2 m
Explanation:
because he goes back 2.2 m so 4.4 minus 2.2 equals 2.2
Answer:
1911
Explanation:
"In 1911, he was the first to discover that atoms have a small charged nucleus surrounded by largely empty space, and are circled by tiny electrons, which became known as the Rutherford model (or planetary model) of the atom."
The momentum, p, of any object having mass m and the velocity v is

Let
and
be the masses of the large truck and the car respectively, and
and V_S be the velocities of the large truck and the car respectively.
So, by using equation (i),
the momentum of the large truck 
and the momentum of the small car
.
If the large truck has the same momentum as a small car, then the condition is

The equation (ii) can be rearranged as

So, the first scenario:


So, to have the same momentum, the ratio of mass of truck to the mass of the car must be equal to the ratio of velocity of the car to the velocity of the truck.
The other scenario:


So, to have the same momentum, the ratio of mass of truck to the velocity of the car must be equal to the ratio of mass of the car to the velocity of the truck.
Look at at highest number for each x and y value given