Answer:
6.07 N
Explanation:
Given that,
Force, F = 35 N
It makes 10 degree angle with the positive x-axis.
We need to find the magnitude of the vertical component of the force. It can be given by :
![F_y=F\sin\theta\\\\=35\times \sin(10)\\\\=6.07\ N](https://tex.z-dn.net/?f=F_y%3DF%5Csin%5Ctheta%5C%5C%5C%5C%3D35%5Ctimes%20%5Csin%2810%29%5C%5C%5C%5C%3D6.07%5C%20N)
So, the magnitude of the vertical component of the force is 6.07 N.
Answer:
The breaking in <em>molecular</em> bonds in food releases energy for your body to use.
G is the answer for apex vs / Chehhhh
Answer:
Uncertainty in position of the bullet is ![\Delta x=1.07\times 10^{-33}\ m](https://tex.z-dn.net/?f=%5CDelta%20x%3D1.07%5Ctimes%2010%5E%7B-33%7D%5C%20m)
Explanation:
It is given that,
Mass of the bullet, m = 35 g = 0.035 kg
Velocity of bullet, v = 709 m/s
The uncertainty in momentum is 0.20%. The momentum of the bullet is given by :
![p=mv](https://tex.z-dn.net/?f=p%3Dmv)
![p=0.035\times 709=24.81\ kg-m/s](https://tex.z-dn.net/?f=p%3D0.035%5Ctimes%20709%3D24.81%5C%20kg-m%2Fs)
Uncertainty in momentum is,
![\Delta p=0.2\%\ of\ 24.81](https://tex.z-dn.net/?f=%5CDelta%20p%3D0.2%5C%25%5C%20of%5C%2024.81)
![\Delta p=0.049](https://tex.z-dn.net/?f=%5CDelta%20p%3D0.049)
We need to find the uncertainty in position. It can be calculated using Heisenberg uncertainty principal as :
![\Delta p.\Delta x\geq \dfrac{h}{4\pi}](https://tex.z-dn.net/?f=%5CDelta%20p.%5CDelta%20x%5Cgeq%20%5Cdfrac%7Bh%7D%7B4%5Cpi%7D)
![\Delta x=\dfrac{h}{4\pi \Delta p}](https://tex.z-dn.net/?f=%5CDelta%20x%3D%5Cdfrac%7Bh%7D%7B4%5Cpi%20%5CDelta%20p%7D)
![\Delta x=\dfrac{6.62\times 10^{-34}}{4\pi \times 0.049}](https://tex.z-dn.net/?f=%5CDelta%20x%3D%5Cdfrac%7B6.62%5Ctimes%2010%5E%7B-34%7D%7D%7B4%5Cpi%20%5Ctimes%200.049%7D)
![\Delta x=1.07\times 10^{-33}\ m](https://tex.z-dn.net/?f=%5CDelta%20x%3D1.07%5Ctimes%2010%5E%7B-33%7D%5C%20m)
Hence, this is the required solution.
Answer:
Voltage in primary coil is 3.91 V
Explanation:
For transformer we know that the working principle is given as
![\frac{V_1}{V_2} = \frac{N_1}{N_2}](https://tex.z-dn.net/?f=%5Cfrac%7BV_1%7D%7BV_2%7D%20%3D%20%5Cfrac%7BN_1%7D%7BN_2%7D)
here we know that
![V_1 [tex] = voltage in primary coil[tex]V_2 = 25 V](https://tex.z-dn.net/?f=V_1%20%5Btex%5D%20%3D%20voltage%20in%20primary%20coil%3C%2Fp%3E%3Cp%3E%5Btex%5DV_2%20%3D%2025%20V)
![N_1 = 500](https://tex.z-dn.net/?f=N_1%20%3D%20500)
![N_2 = 3200](https://tex.z-dn.net/?f=N_2%20%3D%203200)
Now we have
![\frac{V_1}{25} = \frac{500}{3200}](https://tex.z-dn.net/?f=%5Cfrac%7BV_1%7D%7B25%7D%20%3D%20%5Cfrac%7B500%7D%7B3200%7D)
![V_1 = 3.91 V](https://tex.z-dn.net/?f=V_1%20%3D%203.91%20V)