I think the correct answer from the choices would be that metals donate electrons to nonmetals. Ionic bonding involves transfer of valence electrons. The metal looses its valence electrons which makes it a cation while the nonmetal accepts these electrons.
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
Answer: Technician B
Explanation: In manual cars,the clutch safety is designed to stop the vehicle from moving when you start the gnition. It prevents power from flowing into the circuit . This is found in the pedal mechanism of cars so depressing the clutch pedal will likely cause a defective in the clutch safety. You will begin to perceive the clutch burning and white fumes coming out from the pedal.
Answer:
fhc
Explanation:
chchfufuufufyfydyedhxhfud wyruficjc
The elements which have similar behavior are Barium, strontium and beryllium.
Explanation: