Mass is how heavy is it, weight is the size both are the same
Answer:
The answer to your question is: total energy = 30100.4 J
Explanation:
Kinetic energy (KE) is the energy due to the movement of and object, its units are joules (J)
Data
mass = 1280 kg
speed = 4.92 m/s
Force = 509 N
distance = 28.7 m
Formula

Work = Fd
Process
- Calculate Kinetic energy
- Calculate work
- Add both results
KE = 
KE = 15492.1 J
Work = (509)(28.7)
Work = 14608.3 J
Total = 15492.1 + 14608.3
Total energy = 30100.4 J
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
False
Explanation:
In miles per hour, light speed is about 670,616,629 mph
Answer:
.
Explanation:
By Newton's Second Law, the acceleration
of an object is proportional to the net force
on it. In particular, if the mass of the object is
, then
.
Rewrite this equation to obtain:
.
In this case, the assumption is that the
force is the only force that is acting on the object. Hence, the net force
on the object would also be
Make sure that all values are in their standard units. Forces should be in Newtons (same as
, and the acceleration of the object should be in meters-per-second-squared (
). Apply the equation
to find the mass of the object.
.