Answer:
The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.
Explanation:
As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.
By definition, the kinetic energy is:
k = 0.5*mV^2
Expressing the initial and final kinetic energy for cars A and B:


Since the masses are equals:

For the known velocities, the kinetics energies result:




The lost energy in the collision is the difference between the initial and final kinectic energies:


Finally the relation between the lost and the initial kinetic energy:


Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
Achieve a full outer shell
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
Answer: 36 meters.
Equation to find distance:
Speed x time