As the car is moving it indicates that the kinetic energy is being represented. That's why I am pretty sure that this statement is correct! That's all you need to know to solve this. Regards!
Answer:
D: 0.239
Explanation:
Equation for ideal efficiency is;
η = 1 - (T_c/T_h)
We are told that;
steam comes out at 112° C. Thus, T_h = 112°C. Converting to Kelvin gives; T_h = 112 + 273 = 385 K
The one exiting into the condenser is kept at 20°C. Thus; T_c = 20 + 273 = 293 K
Thus;
η = 1 - (293/385)
η = 0.239
Answer:
<em>The correct option is 1. 720 m</em>
Explanation:
<u>Projectile Motion</u>
When an object is launched in free air (no friction) with an initial speed vo at an angle
, it describes a curve which has two components: one in the horizontal direction and the other in the vertical direction. The data provided gives us the initial conditions of the survival package's launch.


The initial velocity has these components in the x and y coordinates respectively:


And we know the plane has an altitude of 600 m, so the package will reach ground level when:

The vertical distance traveled is given by:

We'll set up an equation to find the time when the package lands


Solving for t, we find only one positive solution:

The horizontal distance is:

The correct option is 1. 720 m
“Magnets are surrounded by an invisible magnetic field that is made by the movement of electrons, the subatomic particles that circle the nucleus of an atom”
“Every magnet has both a north and a south pole. When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another. When you place like poles of two magnets near each other (north to north or south to south), they will repel each other.”
Answer:
b) 6
Explanation:
Given
v(t)=3t²+6t
X(0) = 2
X(1) = ?
Knowing that
v(t)=3t²+6t = dX/dt
⇒ ∫dX = ∫(3t²+6t)dt
⇒ X - X₀ = t³ + 3t²
⇒ X(t) = X₀ + t³ + 3t²
If X(0) = 2
⇒ X(0) = X₀ + (0)³ + 3(0)² = 2
⇒ X₀ = 2
then we have
X(t) = t³ + 3t² + 2
when
t = 1
X(1) = (1)³ + 3(1)² + 2
X(1) = 6