Answer:
a. A baseball after it has been hit - not in free fall
b. A rock that is thrown in the air - not in free fall
c. The moon - free-fall
d. A paper airplane - not in free fall
e. A bird flying - not in free fall
Explanation:
- The free-fall is defined as the falling of an object due to the action of gravity. The object is not experiencing any other force neglecting the air resistance.
- If an object is in free-fall, the direction of its motion is directed towards the center of the earth. It does not have a horizontal component of velocity.
- If the body is under free-fall, but a centripetal force acts on it where it is equal to the gravitational force at that point. The object will have two components of velocity along the tangential line, perpendicular to the radius of the orbit.
a. A baseball after it has been hit - not in free fall according to point 1 & 2.
b. A rock that is thrown in the air - not in free fall according to point 1.
c. The moon - free-fall according to point 3.
d. A paper airplane - not in free fall according to point 1 & 2.
e. A bird flying - not in free fall according to point 1 & 2.
Answer:
ANS : .Energy spent on spraying =
Explanation:
<em>Given:</em>
- <em>Radius of mercury = 1cm initially ;</em>
- <em>split into
drops ;</em>
Thus, volume is conserved.
i.e ,

- Energy of a droplet =
Δ
Where ,
- <em>T is the surface tension </em>
- <em>ΔA is the change in area</em>
Initial energy 
Final energy 
∴ .Energy spent on spraying = 
ANS : .Energy spent on spraying =
By someone wearing them doing some exhilarating thing
Answer:
MISSING DATA, SPEED AT WHICH IT WAS LAUNCHED OR INITIAL
DISTANCE THAT REACHED UPWARDS
Explanation:
ANYWAY I LEAVE YOU THE LINK, AUÍ AHY MORE INFORMATION ON THE
SUBJECT.
https://gscourses.thinkific.com