1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
12

Compute the limit of the following as x approaches infinity.

Mathematics
1 answer:
Nonamiya [84]3 years ago
3 0

Yes, that's the correct limit.

\sqrt{x^2+1}-x=\dfrac1{\sqrt{x^2+1}+x}=\dfrac1{\sqrt{x^2}\sqrt{1+\frac1{x^2}}+x}

\sqrt{x^2}=|x|, but since x\to\infty, we are considering x>0, for which |x|=x. Then

\displaystyle\lim_{x\to\infty}\sqrt{x^2+1}-x=\lim_{x\to\infty}\frac1{x\left(\sqrt{1+\frac1{x^2}}+1\right)}

and both \dfrac1x and \dfrac1{x^2} vanish as x\to\infty, making the overall limit 0.

You might be interested in
What is 3/4(x2+4x+6)=13x-2
maxonik [38]

Answer:

x_1=12.65\\\\x_2=0.685

Step-by-step explanation:

\frac{3}{4}(x^2+4x+6)=(13x-2)\\\\Multiply\ both\ sides\ by\ 4.\\\\3(x^2+4x+6)=4(13x-2)\\\\3x^2+12x+18=52x-8\\\\3x^2+12x+18-(52x-8)=0\\\\3x^2+12x-52x+18+8=0\\\\3x^2-40x+26=0

Roots of Polynomial:

Roots\ are\ polynomial\ ax^2+bx+c=0\\\\x=\frac{-b\pm \sqrt{(b^2-4ac)}}{2a}

Here\ a=3,\ b-40,\ c=26\\\\x=\frac{-(-40)\pm \sqrt{(-40)^2-4\times 3\times 26}}{2\times 3}\\\\x=\frac{40\pm\sqrt{1288}}{6}\\\\x_1=\frac{40+\sqrt{1288}}{6}\approx 12.65\\\\x_2=\frac{40-\sqrt{1288}}{6}\approx 0.685

6 0
3 years ago
Solve for x. <br><br>Answer Choices<br><br>96<br><br>93<br><br>6<br><br>3
Alex787 [66]
The answer is that x=6
3 0
3 years ago
Read 2 more answers
Need help with 7-11 please
Mice21 [21]
-4. take 11-7 and then make it negative.
7 0
4 years ago
Read 2 more answers
PLS HELP I'LL MARK BRAINLIEST
Elis [28]

Answer:

Domain: (-∞, -5) ∪ (-1, ∞)

Step-by-step explanation:

Note:

For f(x) > 0: See the points of x for which the graph of f(x) lies above the x-axis.

For f(x) < 0: See the points of x for which the graph of f(x) lies below the x-axis.

We need to find the domain of f(x) for which f(x) < 0

From the graph, we can tell:

f(x) < 0 on (-∞, -5) ∪ (-1, ∞)

Therefore: The domain on which the given graph f(x) is negative, is (-∞, -5) ∪ (-1, ∞)

6 0
2 years ago
Please help me!!!!!!!!!!!!!​
monitta

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the following Half-Angle Identities:    tan (A/2) = (sinA)/(1 + cosA)

                                                                     cot (A/2) = (sinA)/(1 - cosA)

Use the Pythagorean Identity: cos²A + sin²B = 1

Use Unit Circle to evaluate: cos 45° = sin 45° = \frac{\sqrt2}{2}

<u>Proof LHS → RHS</u>

Given:                       cot\ (22\frac{1}{2})^o-tan\ (22\frac{1}{2})^o

Rewrite Fraction:     cot\ (\frac{45}{2})^o-tan\ (\frac{45}{2})^o

Half-Angle Identity:   \dfrac{sin(45)^o}{1-cos(45)^o}-\dfrac{sin(45)^o}{1+cos(45)^o}

Substitute:                  \dfrac{\frac{\sqrt2}{2}}{1-\frac{\sqrt2}{2}}-\dfrac{\frac{\sqrt2}{2}}{1+\frac{\sqrt2}{2}}

Simplify:                      \dfrac{\frac{\sqrt2}{2}}{\frac{2-\sqrt2}{2}}-\dfrac{\frac{\sqrt2}{2}}{\frac{2+\sqrt2}{2}}

                               =\dfrac{\sqrt2}{2-\sqrt2}-\dfrac{\sqrt2}{2+\sqrt2}

                               =\dfrac{\sqrt2}{2-\sqrt2}\bigg(\dfrac{2+\sqrt2}{2+\sqrt2}\bigg)-\dfrac{\sqrt2}{2+\sqrt2}\bigg(\dfrac{2-\sqrt2}{2-\sqrt2}\bigg)

                               =\dfrac{2\sqrt2+2}{4-2}-\dfrac{2\sqrt2-2}{4-2}

                               =\dfrac{4}{2}

                               = 2

LHS = RHS:  2 = 2  \checkmark

7 0
4 years ago
Other questions:
  • Use the division algorithm and your estimate to find the quotient: 1,908 ÷ 36.
    13·1 answer
  • HELP ME <br><br><br> The question in in the picture
    9·1 answer
  • ‼️WILL LIST BRAINLIEST ‼️Carlos went to an Astros game. He spent $25.50 each on two tickets, $10.00 for parking, and $27.75 on f
    9·1 answer
  • first one to answer my problem will be marked the brainyest!!!and points!!so get working!! if u have a question about the proble
    10·1 answer
  • What amount would go into the RED portion of the graph?
    5·1 answer
  • A rectangular bedroom floor has an area of 100 square feet and a length of 10 feet. What is the perimeter of the floor?
    15·2 answers
  • 335 what place is the 5 in
    7·2 answers
  • Number 26.
    9·1 answer
  • Mary saved her money
    5·1 answer
  • Determine whether each function is an example of exponential growth or decay. Then, find the y -intercept. y=0.5(1/4) x
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!