Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.
It is called the periodic table
We first assume that this gas is an ideal gas where it follows the ideal gas equation. The said equation is expressed as: PV = nRT. From this equation, we can predict the changes in the pressure, volume and temperature. If the volume and the temperature of this gas is doubled, then the pressure still stays the same.
Answer:
See explanation
Explanation:
A reaction in which heat and light are produced is a combustion reaction. Combustion is said to have occurred when a substance is burnt in oxygen.
The balanced equation of the reaction is;
4Li(s) + O2(g) ------->2Li2O(s)
This reaction is exothermic because heat was produced. The reaction has a low activation energy as the metal easily burst into flames in oxygen. A catalyst is not needed in this reaction because it has a low activation energy.
According to the law of conservation of mass. Atoms are neither created nor destroyed in a chemical reaction. What this means is that in a chemical reaction, the number of atoms of each element on the left hand side must be the same as the same as the number of atoms of the same element on the right hand side.