Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
![E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%3D%20gravity%5Bm%2Fs%5E%7B2%7D%20%5D%5C%5Cm%20%3D%20mass%20%5Bkg%5D%5C%5Cm%3D%20%5Cfrac%7BE_%7Bp%7D%20%7D%7Bg%2Ah%7D%5C%5C%20m%3D%20%5Cfrac%7B100%7D%7B9.81%2A10%7D%5C%5C%5C%5Cm%3D%201.01%5Bkg%5D%5C%5C%5C%5C)
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
![P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\](https://tex.z-dn.net/?f=P_%7Be%7D%20%3Dm%2Ag%2Ah%5C%5CP_%7Be%7D%20%3D1.01%2A9.81%2A5%5C%5C%5C%5CP_%7Be%7D%20%3D%2050%20%5BJ%5D%5C%5C)
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]
<h2>Right answer: a number and a unit</h2>
The measurement consists in <em>comparing a selected pattern with the object or phenomenon whose physical magnitude is going to be measured, to find out how many times the pattern is contained in that magnitude.</em> That is, it is about identifying or quantifying a particular characteristic or aspect of a particular object or construct.
Now, a well done measurement has two parts:
-The number gives us information about the quantity of the measurement, or in other words, the magnitude of the measurement and its precision.
-The units gives us information about the property that is being measured. This is quite important, because a measurement or result with no units is useless.
Note the units may be expressed with letter or symbols, depending on what we are measuring.
Answer:
The 3rd graph
Explanation:
A free body diagram is a diagram which shows all the forces acting on an object.
The problem asks us to find the free body diagram of block A, so we must find all the forces acting on block A.
We have 3 forces acting on block A in total:
- The force of gravity (its weight), which pushes the block downward (in the diagram, it is the force represented with 
- The tension in the rope 1, which pulls block A upwards: this force is represented with 
- The tension in the rope 2, due to the weight of block 2, which pulls block A downwards: this force is represented with 
Based on the direction of these 3 forces, the correct diagram is the 3rd one.
Find the velocity of the object after one second.
v = vo + at
v = (0 m/s) + (9.8 m/s^2)(1 s)
v = 9.8 m/s
Now, using that, you can find the displacement in that one second between 1 and 2.
d = vot + (1/2)at^2
d = (9.8 m/s)(1 s) + (1/2)(9.8 m/s^2)(1 s)^2
d = 14.7 m
Answer:
B. A well-tested explanation for a widely accepted hypothesis
Explanation:
This is true about a scientific theory going by the fact of it being a well tested explanation. For example, in one of the Newtons law of motion which he stated to be<em> "To every action, there is equal and opposite reaction", </em><em>the hypothesis has been known till he was able to offer a well tested explanations with calculations showing that, it was actually true.</em>