<span>When the difference between two results is larger than the estimates error, the result is</span>
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance
It depends on how you want to solve it you can solve it in many different meathods:$
Since both hv same mass and elsstic collision, so their velocity will exchange. Bob A will stop and bob B will move with speed of A just before the collision.
Speed will be = squreroot ( 2*g*L)
L is length of pendulum
Answer:
the answer is that the dough has the same mass before and after it was flattened