Answer:
Explanation:
Length, l = 4.32 x 10^4 m
speed, v = 7.07 x 10^3 m/s
magnetic field, B = 5.81 x 10^-5 T
The formula for the motion emf is given by
e = B x v x l
e = 5.81 x 10^-5 x 7.07 x 10^3 x 4.32 x 10^4
e = 17745.1 V
Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
Answer:
Explanation:
The difference between a bound orbit and an unbound orbit around the sun is that:
An object on a bound orbit pursues the same way around the Sun again and again, while an object on an unbound orbit moves toward the Sun only a single time and afterward stays away forever & never returns.
Answer:

Explanation:
As we know that train is initially moving with the speed

now we know that

now the final speed of the train when it crossed the crossing


now we can use kinematics here



Now the time to cross that junction is given as


