1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Feliz [49]
3 years ago
13

PLS ANSWER FAST WILL GIVE BRAINLY TIMED TEST

Physics
1 answer:
solong [7]3 years ago
4 0
A=F/m
a=(3000000)/(20000)
a=15 m/s^2
You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
What is the Ozone layer?
yaroslaw [1]
"<span>a layer in the earth's stratosphere at an altitude of about 6.2 miles (10 km) containing a high concentration of ozone, which absorbs most of the ultraviolet radiation reaching the earth from the sun."

Hope this helps!
</span>
4 0
3 years ago
Read 2 more answers
A new band sensation is playing a concert and recording it for a live album to be released this summer. The band asks the sound
Amanda [17]

The sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.

<h3>Amplitude of sound wave</h3>

The amplitude of a sound wave is the maximum vertical displacement of the sound wave.

The sound mixer will need to increase the amplitude of the sound wave produced by the singer.

The increase in the amplitude of the sound wave produced by the lower tune singer will result in increased loudness of the sound.

Thus, the sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.

Learn more about sound waves here: brainly.com/question/1199084

8 0
2 years ago
Electrolytes are considered ________ when placed in a solution and allow for adequate conduction of ________ charges.
DedPeter [7]

Answer:

Electrolytes are considered ions when placed in a solution and allow for adequate conduction of particle charges.

Explanation:

Electrolytes are substances that, when are dissolved in solution, separates into electrical positive charges (cations) and electrical negative charges (anions) which are known as ions.

These ions have an adequate capacity to conduct particle charges and, therefore electricity.

Sodium, calcium, phosphate and potassium, are examples of electrolytes.  

<u>Hence, the correct answer is:</u>

Electrolytes are considered ions when placed in a solution and allow for adequate conduction of particle charges.

I hope it helps you!

3 0
4 years ago
The size of the gravitational force between two objects depends on their__. frictional force, inertia, masses and the distance b
Inessa [10]

Answer:

Masses and distance between them

Explanation:

The gravitational force between two objects can be calculated using Newton's Gravitational Law.

However, using logic, we can already dictate what the answer will be, for example. We know that the bigger an object is, the stronger its gravity is. This can be seen with how the moon is much smaller, and also has much less gravity.

Also, the distance between two objects also influences the gravity. This can be seen the further an object gets from Earth, the less of a pull the gravitational field has on it. Another example is that Pluto (being very far from the sun) has less of a gravitational effect from the sun, in comparison to Mercury (the closest plant to the sun).

3 0
3 years ago
Other questions:
  • Solving elastic collisions problem the hard way
    13·1 answer
  • How can you use the graph of velocity versus time to estimate the acceleration of the ball?
    11·2 answers
  • Father drove 176 km in 7 hours. For the first 92 km, he spent
    13·1 answer
  • What is the size of filter paper​
    5·2 answers
  • The mcb of rupa's room is tripped and keeps on tripping again and again . if it is a domestic circuit, what could be the reason
    9·1 answer
  • Using an elastic cord, the astronaut in the black shirt pulls the astronaut with the red shirt back towards him before releasing
    6·1 answer
  • Find the magnitude of the vector v given its initial and terminal points. Round your answer to four decimal places.
    12·1 answer
  • Give me fun facts, the most fun fact will get brainly Est (i like animals)
    10·2 answers
  • A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement
    10·1 answer
  • When is the electric flux on a section of a closed surface positive?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!