1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
3 years ago
10

Any help please? I need help :)

Mathematics
1 answer:
marissa [1.9K]3 years ago
3 0

Answer:

it's a because I said so

You might be interested in
12 + r = 3 <br> how do i solve this?
antoniya [11.8K]
You’d have to try to get r on one side of the equation.
You can do that by subtracting 12 from both sides which would make it so
R = -9
5 0
2 years ago
Read 2 more answers
A search committee is formed to find a new software engineer. (a) If 100 applicants apply for the job, how many ways are there t
vagabundo [1.1K]

These are three questions with three complete answers.

Answers:

(a) C(100,6) = 100! / [ 9! × (100 -9)! ] =

              = (100×99×98×97×96×95×94×93×92) / (9×8×7×6×5×4×3×2×1) =

              = 1,902,231,808,400

(b) C(9,6) = 9! / [ 6! * (9 - 6)! ] = 9! / [6! 3!] = (9 × 8 × 7 × 6!) (6! × 3 × 2 × 1) =

          =  (9 × 8 × 7 × 6!) (6! × 3 × 2 × 1) =  (9 × 8 × 7 ) / (3 × 2 × 1) = 84

(c) P(6,3) = 6! / (6 - 3)! = 6! / 3! = (6 × 5 × 4 × 3!) / 3! = 120

Step-by-step explanation:

(a) If 100 applicants apply for the job, how many ways are there to select a subset of 9 for a short list?

This is the formula for combinations: C (m,n) = m! / [n! (m - n)! ].

We will also use the formula for permutations, only as an intermediate step, to explain the solution. The formula for permutations is: P (m,n) = m! / (m - n)!

Next you will see why the final formula that you can use to solve the problem is that of combinations (because the order in which you make the list does not matter) and how you use it.

You have to select a subset of 9 candidates from a list of 100 applicants.

The first candidate may be chosen from the 100 different applicants, the second candidate may be chosen from the 99 left applicants, the third candidate from 98 applicants, and so on, which leads to:

  • 100 × 99 × 98 × 97 × 96 × 95 × 94 × 93 × 92 possible variants.

Note that this is the permutation of 100 candidates taken from 9 in 9:

P(100,9)  = 100! (100 - 9)! = 100! / (91!) =

              = 100 × 99 × 98 × 97 × 96 × 95 × 94 × 93 × 92 × 91! / 91! =

              = 100× 99 × 98 × 97 × 96 × 95 × 94 × 93 × 92.

But you have to eliminate the repetitions!

Suppose that A, B, C, D, E, F, G, H, I represents the set formed by nine selected members whose names are A, B, C, D, E, F, G, H and I. So, any combination of those same names, written in different order, represents the same set (list). That means that there are 9! = 9× 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 equivalent lists.

That is why you must divide the first result (possible ways in which you can select nine candidates) by the number of ways that represent the same list for every set.

So, the conclusion is that the number of different lists of nine candidates is:

C(100,6) = 100! / [ 9! × (100 -9)! ] =

              = (100×99×98×97×96×95×94×93×92) / (9×8×7×6×5×4×3×2×1) =

              = 1,902,231,808,400

(b) If 6 of the 9 are selected for an interview, how many ways are there to pick the set of people who are interviewed? (You can assume that the short list is already decided).

Since, the short list, i.e. the  subset of 9 candidates is already decided, you will select 6 candidates to interview from 9 possible candidates.

So, your final set of candidates to interview will be the combination of 9 candidates taken from 6 in 6. The order of the names A, B, C, D, E, F, and G, is not relevant, and, therefore, the formula to use is that of combinations:

  • C (m,n) = m! / [n! (m - n)! ]

  • C(9,6) = 9! / [ 6! * (9 - 6)! ] = 9! / [6! 3!] = (9 × 8 × 7 × 6!) (6! × 3 × 2 × 1) =

                   =  (9 × 8 × 7 × 6!) (6! × 3 × 2 × 1) =  (9 × 8 × 7 ) / (3 × 2 × 1) = 84

(c) Based on the interview, the committee will rank the top three candidates and submit the list to their boss who will make the final decision. (You can assume that the interviewees are already decided.) How many ways are there to select the list from the 6 interviewees?

Ranking the top three candidates means that the order matters. Because it is not the same A, B, C than A, C, B, nor B, A, C, nor B, C, A, nor C, A, B, nor C, A, B.

Hence, you have to use the formula for permutations (not combinations).

The formula is: P(m,n) = m! / (m - n)!

Here, you must rank (select) 3 names, from a set (list) of 6 names, and the formula yields to:

  • P(6,3) = 6! / (6 - 3)! = 6! / 3! = (6 × 5 × 4 × 3!) / 3! = 120

4 0
3 years ago
4 radians is the same as _____. <br> Round to the nearest hundredth of a degree.
jenyasd209 [6]
I think the answer is 229.1831. hope this helps!

4 0
3 years ago
Read 2 more answers
Which table contains the values that satisfy equation y=0.5×+12
alina1380 [7]

Answer: 6

Step-by-step explanation:

Maybe

6 0
2 years ago
Line p goes through points (-2,6) and (4, -3). What is the equation of line p?
vekshin1
1+1.....................
6 0
3 years ago
Other questions:
  • On January 16 the temperature in Boston was -8 degrees at 4:00am and it when began to rise 3degrees every hours. What was the te
    10·1 answer
  • Write 81.4 as a fraction.
    6·2 answers
  • PLS HELP ASAP PLSSSS!!!!!!!!!!!!!!!!!!!!!!!!!
    6·1 answer
  • Simplify each expression -5r (3r^2)​
    14·1 answer
  • What is the volume of the triangular prism? Round to the nearest tenth.
    9·2 answers
  • 8. It took Sharon 85 minutes to wash three cars. She spent x minutes on each car and 10 minutes
    12·1 answer
  • Give the slope and the y-intercept of the line y = – 6x– 4. Make sure the y-intercept is written as
    9·1 answer
  • Find the unit rate. 12 laps in 30minutes. <br> Asking for fraction
    9·1 answer
  • Explain how to solve this problem:
    13·1 answer
  • Describe how the figure at the right<br> shows that 36 +27= 9 X (4 + 3).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!