A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
A cylindrical weight with a mass (m) of 3 kg is dropped, that is, its initial velocity (u) is 0 m/s and travels 10 m (s). Assuming the acceleration (a) is that of gravity (9.8 m/s²). We can calculate the velocity (v) of the weight in the instant prior to the collision with the piston using the following kinematic equation.

The object with a mass of 3 kg collides with the piston at 14 m/s, The kinetic energy (K) of the object at that moment is:

The kinetic energy of the weight is completely converted into heat transferred into the gas cylinder. Thus, Q = 294 J.
Given all the process is at 250 K (T), we can calculate the change of entropy of the gas using the following expression.

The change in the entropy of the environment, has the same value but opposite sign than the change in the entropy of the gas. Thus, 
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
Learn more: brainly.com/question/22655760
Yes. When two things are directly prortional, that means that as one increases, the other increases at the same rate. So, say you have a 2kg object at an acceleration of 2m/s^2. The force would be 4N. If you have a 3kg object at an acceleration of 2m/s^2, the force would be 6N. If two things are inversely proportional, that means that as one thing increases the other decreases at the same rate. A good example of this is in a chemical reaction. If you increase the surface area of the reactants, the reaction time decreases. They are inversely proportional.
The ionization energy for a hydrogen atom in the n = 2 state is 328 kJ·mol⁻¹.
The <em>first ionization energy</em> of hydrogen is 1312.0 kJ·mol⁻¹.
Thus, H atoms in the <em>n</em> = 1 state have an energy of -1312.0 kJ·mol⁻¹ and an energy of 0 when <em>n</em> = ∞.
According to Bohr, Eₙ = k/<em>n</em>².
If <em>n</em> = 1, E₁= k/1² = k = -1312.0 kJ·mol⁻¹.
If <em>n</em> = 2, E₂ = k/2² = k/4 = (-1312.0 kJ·mol⁻¹)/4 = -328 kJ·mol⁻¹
∴ The ionization energy from <em>n</em> = 2 is 328 kJ·mol⁻¹
.
Answer:
It indicates that the ratio of the particles in the composition of the sample will always be 2:1 with Hydrogen: Sulfur
An acid.
An acidic compound.
<span>*Acids increase concentrations of H+ ions.</span>