Answer:
The moles of sucrose that are available for this reaction is 0.0292 moles
Explanation:
Combustion is an specifyc reaction where the reactants react with O₂ in order to produce CO₂ and H₂O
This combustion is: C₁₂H₂₂O₁₁ + 12O₂ → 12CO₂ + 11H₂O
We have to conver the mass to moles, to find out the limiting reactant
10 g . 1 mol / 342 g = 0.0292 moles of sucrose
8 g . 1mol / 32g = 0.250 moles of O₂
The moles of sucrose that are available for this reaction is 0.0292 moles
Before we start to work with the equation we must find the limiting reactant. When you find it, you can do all the calculations.
I don't know but look on the internet or use a calculator
Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.