Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Yeah im here and i am alos getting bored to
what are you doing and how is your day ?
I think the answer is a, volume, but I still might be wrong.
The time the chocolate bar could power the laptop in hours is 0.00233 hrs.
Since 200 Calories of chocolate bar were burned to power the 100 Watt laptop, we need to find the number of joules on energy in 200 calories of chocolate bar.
Knowing that 4.2 Joules = 1 Calorie, then
200 Calories = 200 × 1 calorie = 200 × 4.2 Joules = 840 Joules
Since the power required by the laptop is 100 W = 100 J/s and Power, P = energy/time
so, time = energy/power
So, the time for the laptop to use 840 J of energy from the chocolate bar at a rate or power of 100 W = 100 J/s is
time = 840 J ÷ 100 J/s = 8.4 s
So, the time in hours is 8.4 s ÷ 3600 s/1 h = 0.00233 hrs (since 1 hr = 3600 s)
So, the time the chocolate bar could power the laptop in hours is 0.00233 hrs.
Learn more about time to power here:
brainly.com/question/17732603
1. First, you must find the volume of the container holding the liquid. (Length x Width x Height)
2. Find the density of the liquid you are submerging the object in. (D = Mass/Volume)
3. Find the force of gravity. (9.81 Newtons/Kilograms)
4. Multiply (Volume x Density x Gravity).