Answer:
The answer to your questions is Cm = 25.5 J/mol°C
Explanation:
Data
Heat capacity = 0.390 J/g°C
Molar heat capacity = ?
Process
1.- Look for the atomic number of Zinc
Z = 65.4 g/mol
2.- Convert heat capacity to molar heat capacity
(0.390 J/g°C)(65.4 g/mol)
- Simplify and result
Cm = 25.5 J/mol°C
Answer:
pCH4 = 0.9184 atm
pCCl4 = 0.9184 atm
pCH2Cl2 = 0.2832 atm
Explanation:
Step 1: Data given
The equilibrium constant, Kp= 9.52 * 10^-2
Temperature = 350 K
Each have an initial pressure of 1.06 atm
Step 2: The balanced equation
CH4(g) + CCl4(g) ⇆ 2CH2Cl2(g)
Step 3: The pressure at the equilibrium
pCH4 = 1.06 - X atm
pCCl4 = 1.06 - X atm
pCH2Cl2 = 2X
Step 4: Calculate Kp
Kp = (2X)² / (1.06 - X)*(1.06 - X)
9.52 * 10^-2 = 4X² / (1.06 - X)*(1.06 - X)
X = 0.1416
Step 5: Calculate the partial pressure
pCH4 = 1.06 - 0.1416 = 0.9184 atm
pCCl4 = 1.06 - 0.1416 = 0.9184 atm
pCH2Cl2 = 2 * 0.1416 = 0.2832 atm
Kp = (0.2832²) / (0.9184*0.9184)
Kp = 9.52 * 10^-2
pCH4 = 0.9184 atm
pCCl4 = 0.9184 atm
pCH2Cl2 = 0.2832 atm
Answer:
V₂ = 30.20 L
Explanation:
Given data:
Initial volume = 45 L
Initial temperature = 298 K
Final temperature = 200 K
Final volume = ?
Solution;
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 45 L × 200 K / 298 k
V₂ = 9000 L.K / 298 K
V₂ = 30.20 L
Per ml, aluminum has 2.7 grams of mass. So in 250 ml, there are (2.7)*(250) number of grams.
675 grams.
266000 = 2.66 x 10^5
hope this helps