Answer:
4057.85 g/mol
Explanation:
Hello, the numerical procedure is shown in the attached file.
- In this case, since we don't have the density of the protein, we must assume that the volume of the solution is solely given by the benzene's volume, in order to obtain the moles of the solute (protein).
-Van't Hoff factor is assumed to be one.
Best regards.
Answer:
True
Explanation: Imagine the Electrons is by the nucleus which give more energy.
Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>
Answer:
Chemical change.
Explanation:
When it is heated it decomposes into mercury and oxygen gas. The mercury oxide reactant becomes the silver color of mercury. Hence, a color change can be noticed throughout the reaction.
You spelled bored wrong lol