You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Humid air has higher pressure because of the heaviness of the water
Explanation:
Solar technologies convert sunlight into electrical energy either through photovoltaic (PV) panels or through mirrors that concentrate solar radiation. This energy can be used to generate electricity or be stored in batteries or thermal storage.
Answer:
Explanation:
The electric field outside the sphere is given as,
E = k Q /r²
here Q = n x 1.6 x 10⁻¹⁹ C
where n is the number of electons
if the dimeter of sphere d= 25 cm= 0.25 m
then the radius r = 0.125 m
we get
n= E r²/ k x 1.6 x 10⁻¹⁹ C
n = 1350N/C x (0.125m)² / (8.99 x 10⁹ N m²/C² x 1.6 x 10⁻¹⁹ C)
n = 14664731646