Answer:
Explanation:
F = kQq/r²
r = √(kQq/F)
a) r = √(8.899(10⁹)(8)(4) / 18(10¹³)) = 0.0397749... m
r = 40 mm
b) r = √(8.899(10⁹)(12)(3) / 18(10¹³)) = 0.0421876... m
r = 42 mm
It can be either C or B
Reasons it can be C: Red and Blue together(if I'm correct in art) is the combined color of two of the 3 primary colors to get a purple/violet color and if said filter is see through or just too dense for the light to even penetrate the said filter(in theory) but all in all purple is the answer with the two primary colors blue and red.
But also, it depends on what kind of filter it is, if the filter is like a screen filter then it will just come out in blue with the slightly different colors of again purple but in a darker tone then the actual eye can see.
Or it can be just C again cause the filter can be a film but that's a bit too far and to complex for right now so I believe it is B
Answer:
B. The number of electrons emitted from the metal per second increases.
Explanation:
Light consists of photons . Energy of each photon depends upon frequency of light . The increase in intensity increases the number of photons . It does not increase energy of photons .
So if a high intensity light falls on a photosensitive plate , each photon ejects one electron . So number of electrons increases if we increase intensity of photon. It does not increase kinetic energy of ejected electrons . Work function depends upon the nature of plate.
Jane's mechanical energy at any time is

where

is the potential energy, while

is the kinetic energy.
Initially, Jane is on the ground, so the altitude is h=0 and the potential energy is zero: U=0. She's running with speed v, so she has kinetic energy only:

Then she grabs the vine, and when she reaches the maximum height h, her speed is zero: v=0, and so the kinetic energy becomes zero: K=0. So now her mechanical energy is just potential energy:

But E must be conserved, so the initial kinetic energy must be equal to the final potential energy:

from which we can find h, the maximum height Jane can reach: