The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
<h3>What is velocity?</h3>
Velocity is a vector quantity that tells the distance an object has traveled over a period of time.
Displacement is a vector quality showing total length of an area traveled by a particular object.
Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?
The slope of the line is equal to zero and the object will be stationary.
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
To learn more about velocity refer to the link
brainly.com/question/18084516
#SPJ2
A person is guilty of second degree misdemeanor if he or she
makes a false statement or commits forgery about their motor vehicle’s
insurance.
You would be required to have bodily injury liability
insurance in Florida if you are involved in a crash where your vehicle has
caused damage to the property of others.
Though, a person is not required to have a Bodily
Injury Liability<span> (BI) to legally drive an automobile in the state
of Florida. Nevertheless, it would be possible if you are driving under the
influence since you are driving while impaired, driving while intoxicated or
drunk driving.</span>
Answer:
A. The model was the result of hundreds of years of experiments.
Explanation:
Since it is not possible to visualize an atom in isolation, scientists have spent hundreds of years experimenting and creating atomic models, that is, images that serve to explain the constitution, properties and behavior of atoms.
The earliest who imagined the existence of the atoms were the Greek philosophers Leucippus and Democritus in about 450 BCE. According to them, everything would be formed by tiny indivisible particles. Hence the origin of the name "atom", which comes from the Greek a (no) and tome (parts).
But in the nineteenth century, some scientists began to conduct experimental tests increasingly accurate thanks to technological advances. Not only was it discovered that everything was actually made up of tiny particles, but it was also possible to understand more and more about the atomic structure.
Scientists used the information discovered by other scholars to develop the atomic model. In this way, the discoveries of one scientist were replaced by those of others. The concepts that were correct remained, but those that proved to be non-real were now abandoned. Thus, new atomic models were created. This series of discoveries of the atomic structure until arriving at the accepted models today was known like the evolution of the atomic model.
you have to substitiute volume of the ballon
Answer:
123.30 m
Explanation:
Given
Speed, u = 22 m/s
acceleration, a = 1.40 m/s²
time, t = 7.30 s
From equation of motion,
v = u + at
where,
v is the final velocity
u is the initial velocity
a is the acceleration
t is time
V = at + U
using equation v - u = at to get line equation for the graph of the motion of the train on the incline plane
where m is the slope
Comparing equation (1) and (2)

a = m
Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.
a = - 1.40 m/s²
Sunstituting a = - 1.40 m/s² and u = 22 m/s


The speed of the train at 7.30 s is 11.78 m/s.
The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.
Area of triangle + Area of rectangle
![[\frac{1}{2} * (22 - 11.78) * (7.30)] + [(11.78 - 0) * (7.30)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%2822%20-%2011.78%29%20%2A%20%287.30%29%5D%20%20%2B%20%5B%2811.78%20-%200%29%20%2A%20%287.30%29%5D)
= 37.303 + 85.994
= 123. 297 m
≈ 123. 30 m