Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
Answer:
Explanation:
It is given that,
Number of turns in the coil, N = 220
Diameter of the coil, d = 4.4 cm
Radius of the coil, r = 2.2 cm = 0.022 m
Magnetic field produced by the poles of magnet, 
Current flowing in the coil, I = 15 A
Let M is the coil's magnetic dipole moment. Its formula is given by :



So, the coil's magnetic dipole moment is
. Hence, this is the required solution.
Answer:
Electrons
Explanation:
Electrons are negatively charged sub-atomic particles, therefore when a body's negatively charged, it means that there's more electrons than protons.
Answer:
Explanation:
Given
Weight of person
At highest point Magnitude of the normal force
net force at highest point
where
centripetal force
Normal Force
Negative sign shows force is in upward direction
At bottom point centripetal force is towards the bottom