Answer:
The third particle should be at 0.0743 m from the origin on the negative x-axis.
Explanation:
Let's assume that the third charge is on the negative x-axis. So we have:

We know that the electric field is:

Where:
- k is the Coulomb constant
- q is the charge
- r is the distance from the charge to the point
So, we have:

Let's solve it for r(3).
Therefore, the third particle should be at 0.0743 m from the origin on the negative x-axis.
I hope it helps you!
I believe the answer is x
Answer:
8 m west
Explanation:
If we say east is the +x direction, and west is the -x direction, then the displacement is:
Δx = 12 m + (-20 m)
Δx = -8 m
Answer:
Explanation:
There is electric field between the plates whose value is given by the following expression
electric field E = V /d where V is potential between the plates and d is distance between them
E = 300 / 5 x 10⁻³
= 60 x 10³ N/c
Force on electron = q E where q is charge on the electron
F = 1.6 X 10⁻¹⁹ X 60 X 10³ = 96 X 10⁻¹⁶ N.
Acceleration a = force / mass
a = 96 x 10⁻¹⁶/ mass = 96 x 10⁻¹⁶ / 9.1 x 10⁻³¹
= 10.55 x 10¹⁵ m / s²
For midway , distance travelled
s = 2.5 x 10⁻³ m
s = 1\2 a t²
t = 
= 
t = .474 x 10⁻¹⁸ s
For striking the plate time is calculated as follows
t =
[/tex]
t = 0.67 x 10⁻¹⁸ s
It increases across a period but it decreases down a group.