Answer:
The change in energy of the gas during the process is
joules.
Explanation:
We can represent this process by the First Law of Thermodynamics, in which gas does work on its surroundings and absorbs heat from there to describe its change in energy. In other words:

Where:
- Heat absorbed by the gas, measured in joules.
- Work done by the gas, measured in joules.
- Change in energy, measured in joules.
If we know that
and
, the change in energy of the gas is:


The change in energy of the gas during the process is
joules.
Using the formula:
a = (Vf - Vi) / t
Our initial velocity is 0 m/s, and our final velocity is 8.15 m/s, with a time period of 5 seconds:
a = (8.15 - 0.0) / 5
a = 1.63 m/s^2
If you know the acceleration due to gravity on the Moon, you can confirm this answer. The recorded gravitational acceleration on the Moon is 1.62 m/s^2.
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Neutron is commonly used to initiate a fission chain reaction.
Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm