Instability of an atoms nucleus can result from an excess of either neutrons or protons . So neutrons and protons .
calculate moles of both reagents given and the moles of FeS that each of them would form if they were in excess
moles = mass / molar mass
moles Fe = 7.62 g / 55.85 g/mol
= 0.1364 moles
1 mole Fe produces 1 mole FeS
Therefore 7.62 g Fe can form 0.1364 moles FeS
moles S = 8.67 g / 32.07 g/mol
= 0.2703 moles S
1 mole S can from 1 moles FeS
So 8.67 g S can produce 0.2703 moles FeS
The limiting reagent is the one that produces the least product. So Fe is limiting.
The maximum amount of FeS possible is from complete reaction of all the limiting reagent.
We have already determined that the Fe can form up to 0.1364 moles of FeS, so this is max amount of FeS you can get.
Convert to mass
hope this helps :)
Answer:
8.33 hours
Explanation:
In order to solve this problem, we must apply Graham's law of diffusion in gases. Graham's law states that the rate of diffusion of a gas is inversely proportional to the square root of its vapour density. For two gases we can write;
R1/R2=√d2/d1
Where;
R1= rate of diffusion of hydrogen
R2= rate diffusion of unknown gas
d1= vapour density of hydrogen
d2= vapour density of the unknown gas
Volume of hydrogen gas = 360cm^3
Time taken for hydrogen gas to diffuse= 1 hour =3600 secs
R1 = 360 cm^3/3600 secs = 0.1 cm^3 s-1
Vapour density of unknown gas = 25
Vapour density of hydrogen = 1
Substituting values,
0.1/R2 = √25/1
0.1/R2 = 5/1
5R2 = 0.1 × 1
R2 = 0.1/5
R2= 0.02 cm^3s-1
Volume of unknown gas = 600cm^3
Time taken for unknown gas to diffuse= volume of unknown gas/ rate of diffusion of unknown gas
Time taken for unknown gas to diffuse= 600/0.02
Time= 30,000 seconds or 8.33 hours
Answer:
This all should be correct:
c
a
c
a
Answer:
yes it would be D. because passive prostheses are lightweight and don't have active movement
Explanation: