Hi there!
This collision is an example of an inelastic collision since kinetic energy is lost from the collision.
We can represent this using the conservation of momentum formula:
m1v1 + m2v1 = m1vf + m2vf
Where:
m1 = blue ball
m2 = green ball
We know that the final velocity of the blue ball is 0, so:
m1v1 + m2v1 = m2vf
Rearrange to solve for the speed of the green ball:
(m1v1 + m2v1)/m2 = vf
Plug in given values:
((0.15 · 3) + (0.15 · 2)) / 0.15 = 5 m/s
Answer:
Magnitude of the resultant force will be 20N in the direction of
.
Explanation:
It's given in the question that two forces have been applied on the object given.
Since force is a vector quantity, therefore, it has magnitude and direction both.


Both the forces are in the opposite directions.
Therefore, magnitude of the resultant force of these forces will be,

= 20 N
And the direction of the resultant force will be towards
.
Therefore, magnitude of the resultant force will be 20N in the direction of
.
R1 + R4 = 1430 + 1350 = 2780 = R14 series combination of R1 & R4
R2 + R5 = 1350 + 1150 = 2500 = R25
The circuit has been reduced to 3 resistors in parallel
R314 = 2780 * 1100 / (2780 + 1100) = 788 this is the resistance of the parallel combination of R14 and R3
R31425 = 2500 * 788 / (2500 + 788) = 599 which is the equivalent of the circuit - you can also use the formula for 3 resistors in parallel but this seems simpler