Answer:
Acceleration of the object is
.
Explanation:
It is given that, the position of the object is given by :
![r=[2\ m+(5\ m/s)t]i+[3\ m-(2\ m/s^2)t^2]j](https://tex.z-dn.net/?f=r%3D%5B2%5C%20m%2B%285%5C%20m%2Fs%29t%5Di%2B%5B3%5C%20m-%282%5C%20m%2Fs%5E2%29t%5E2%5Dj)
Velocity of the object, 
Acceleration of the object is given by :

![a=\dfrac{d^2}{dt^2}([2\ m+(5\ m/s)t]i+[3\ m-(2\ m/s^2)t^2]j)](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5E2%7D%7Bdt%5E2%7D%28%5B2%5C%20m%2B%285%5C%20m%2Fs%29t%5Di%2B%5B3%5C%20m-%282%5C%20m%2Fs%5E2%29t%5E2%5Dj%29)
Using the property of differentiation, we get :

So, the magnitude of the acceleration of the object at time t = 2.00 s is
. Hence, this is the required solution.
The sphere has a constant potential. It is the electric field.

In the sphere, then

Outside the sphere, then

The elements of the electric field include

Which becomes,

<h3>
In a consistent electric field, is force constant?</h3>
Similar to an ordinary object in the uniform gravitational field near the Earth's surface, a charged item in a uniform electric field experiences a constant force and consequently experiences a uniform acceleration. The vector cross product of p and E determines the torque's direction.
If the charge is positive, the force either moves in the same direction as E or in the opposite direction (if charge is negative).
A torque is experienced by an electric dipole (p) in an even electric field (E). The vector cross product of p and E determines the torque's direction.
To learn more about uniform electric field, visit
brainly.com/question/17426130
#SPJ4
Compared to coffee at room temperature, the molecules of the coffee at 34°C will be moving faster and colliding with one another more frequently.
Answer:The poles
Explanation:
The field is strongest at the poles