Nuclear fusion is a reaction in which two or more atomic nuclei come very close and then collide at a very high speed and join to form a new nucleus. This process is important to stars because they get their energy from the nuclear fusion process
68% So 68/100 of freshwater is found in ice
The mass of the cold water, given the data from the question is 500 g
<h3>Data obtained from the question</h3>
- Mass of warm water (Mᵥᵥ) = 200 g
- Temperature warm water (Tᵥᵥ) = 75 °C
- Temperature of cold water (T꜀) = 5 °C
- Equilibrium temperature (Tₑ) = 25 °C
- Specific heat capacity of the water = 4.184 J/gºC
- Mass of cold water (M꜀) =?
<h3>How to determine the mass of the cold water </h3>
Heat loss = Heat gain
MᵥᵥC(Tᵥᵥ – Tₑ) = M꜀C(Tₑ – T꜀)
200 × 4.184 (75 – 25) = M꜀ × 4.184(25 – 5)
41840 = M꜀ × 83.68
Divide both side 83.68
M꜀ = 41840 / 83.68
M꜀ = 500 g
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Answer:
26.5 m
Explanation:
= initial position of the object = 75.2 m
= final position of the object
= displacement of the object = - 48.7
Displacement of the object is given as the difference of final and initial position of the object

Inserting the values
- 48.7 = x - 75.2
x = 26.5 m