Answer:
The solution for this problem is:
We will be using the formula for force which is F = ma
=>10,000 = 2000 * a
but we need to solve for acceleration so divide both sides by 2000, we will get:
=>a = 5 m/s^2
Let the initial velocity was u m/s
=>By v = u - at
=>0 = u - 5 x 6
Since acceleration is constant the velocity can be computed by multiplying the acceleration by 6 seconds.
=>u = 30 m/s
Explanation:
Answer:
7 Newton
Explanation:
Dado
Longitud de la cuerda = 50 m
El cable se dobla en 0,058 m.
Masa de roedor = 350 gramos = 0,35 kg
T = m * a + m × v2 / r
Sustituyendo los valores dados obtenemos
T = 0,35 (10 + 10)
T = 0,35 * 20
T = 7 Newton
Answer:
a) Weight of the rock out of the water = 16.37 N
b) Buoyancy force = 4.61 N
c) Mass of the water displaced = 0.47 kg
d) Weight of rock under water = 11.76 N
Explanation:
a) Mass of the rock out of the water = Volume x Density
Volume = 470 cm³
Density = 3.55 g/cm³
Mass = 470 x 3.55 = 1668.5 g = 1.6685 kg
Weight of the rock out of the water = 1.6685 x 9.81 = 16.37 N
b) Buoyancy force = Volume x Density of liquid x Acceleration due to gravity.
Volume = 470 cm³
Density of liquid = 1 g/cm³

c) Mass of the water displaced = Volume of body x Density of liquid
Mass of the water displaced = 470 x 1 = 470 g = 0.47 kg
d) Weight of rock under water = Weight of the rock out of the water - Buoyancy force
Weight of rock under water = 16.37 - 4.61 =11.76 N
V2 = 4.4579 L
Since pressure is constant, use Charle’s law.
Charles's law, a statement that the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.
V(olume) 1 = V(olume) 2
————— —————
T(emperature) 1 T(emperature)2
4.00 L = V2
———- ———
297 K 331 K
Cross multiply
(4.00 L x 331 K) = (297 K x V2)
Simplify
1324 L/K = 297 K x V2
Isolate V2 by dividing out 297 K
1324 L/K = V2
————
297 K
(This cancels out the kelvin and leaves you with Liters as the volume measure)
V2 = 4.4579 L
Round to significant digits if required