The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Compressions are the areas of high pressure while rarefractions are low pressure area
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
The thin layer of water that covers most earths surface is called the hydrosphere.
Answer:
C. unlikely to combine with other elements.
Explanation:
In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.
Valence electrons can be defined as the number of electrons present in the outermost shell of an atom. Valence electrons are used to determine whether an atom or group of elements found in a periodic table can bond with others. Thus, this property is typically used to determine the chemical properties of elements.
Noble gases are chemical elements with eight valence electrons and as such have a full octet. Some examples are argon, neon, etc.
Hence, the full octet makes the gas (neon) unlikely to combine with other elements.