Answer:
Elastic potential energy, 
Explanation:
Charge, 
Potential, V = 50 V
It is required to find the electric potential energy in a capacitor stored in it. The formula of the electric potential energy in a capacitor is given by :

So, the electric potential energy stored in the capacitor is 
The acceleration of the car is 0.8049
.It takes 13.802s to travel the 230 m.
<h3>
What is acceleration?</h3>
In mechanics, acceleration refers to the rate at which an object's velocity with respect to time varies. Acceleration is a vector quantity (in that they have magnitude and direction). The direction of an object's acceleration is determined by the direction of the net force acting on it. Newton's Second Law states that the combined effect of two factors determines how much an item accelerates:
(i) It follows that the magnitude of the net balance of all external forces acting on the object is directly proportional to the magnitude of this net resulting force, and
(ii) the mass of the thing, depending on the materials out of which it is constructed, is inversely proportional to the mass of the thing.
Calculations:
40 km/hr ----- 11.11m/s
80 km/hr ----- 22.22m/s

Time taken
v-u=at
22.22-11.11= 0.8049 x t
t=13.802s
To learn more about acceleration ,visit:
brainly.com/question/2303856
#SPJ4
Answer:
15 m/s or 1500 cm/s
Explanation:
Given that
Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s
Distance moved during the hook, d(h) = 5 cm = 0.05 m
Distance moved by the fist, d(f) = 100 cm = 1 m
Average speed of the fist during the hook, v(f) = ? cm/s = m/s
This can be solved by a very simple relation.
d(f) / d(h) = v(f) / v(h)
v(f) = [d(f) * v(h)] / d(h)
v(f) = (1 * 0.75) / 0.05
v(f) = 0.75 / 0.05
v(f) = 15 m/s
Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s
The statement is false. Balanced forces can NOT change the speed OR direction of an object's motion. (See Newton's #1 law of motion.)