Options found from another source are:
a. oxygen. b. glucose. c. energy stored as ATP. d. carbon dioxide and water
Answer:
c energy stored as ATP
Explanation:
Cellular respiration converts glucose into energy in the form of ATP (c). The answer cannot be oxygen (a), because this is required for this process as a final electron acceptor. In terms of photosynthesis, oxygen is released as a by-product. The answer cannot be glucose (b) because that is our starting point for respiration, and what is synthesised during photosynthesis. The answer cannot be (d) as carbon dioxide and water are released by cellular respiration, and required by photosynthesis
Answer:
LED bulbs fit standard light sockets and are the most energy-efficient option. LEDs have lower wattage than incandescent bulbs but emit the same light output. This allows them to produce the same amount of light but use less energy. LEDs can last over 20 years and don't contain mercury
Taking into account the definition of avogadro's number, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
<h3>
Avogadro's Number</h3>
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
<h3>This case</h3>
Then you can apply the following rule of three: if 6.023×10²³ particles are contained in 1 mole of H, then 2.3×10²¹ particles are contained in how many moles of H?
amount of moles of H= (2.3×10²¹ particles × 1 mole)÷ 6.023×10²³ particles
<u><em>amount of moles of H= 3.82×10⁻³ moles</em></u>
Finally, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
Learn more about Avogadro's Number:
<u>brainly.com/question/11907018?referrer=searchResults
</u>
<u>brainly.com/question/1445383?referrer=searchResults
</u>
<u>brainly.com/question/1528951?referrer=searchResults</u>
Products
Chemical reactions are characterized by the formation of new products, and the making and breaking of strong chemical bonds.
2KClO₃ → 2KCl + 3O₂
mole ratio of KClO₃ to O₂ is 2 : 3
∴ if moles of O₂ = 5 mol
then moles of KClO₃ =

= 3.33 mol
Mass of KClO₃ needed = mol of KClO₃ × molar mass of KClO₃
= 3.33 mol × ((39 × 1) + (35.5 × 1) + (16 × 3) g/mol
= 407.93 g