1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
7

What quantity do units represent in a value1. size2.direction3.dimension4.magnitude

Physics
1 answer:
Nikitich [7]3 years ago
3 0
Magnitude. hope this helps
You might be interested in
Q1. Which statement is correct
marishachu [46]

Answer:

C

D

Explanation:

7 0
3 years ago
Which of these are terrestrial planets? Select all that apply.
Strike441 [17]
The answers to the question above would be letters a, b, c, and d. The terrestrial planets are those that are close to the sun, namely, Mercury, Venus, Earth, and Mars. The others are known as the gas giants since they have a thick atmosphere and are considerably cold.
5 0
3 years ago
Read 2 more answers
A 217 Ω resistor, a 0.875 H inductor, and a 6.75 μF capacitor are connected in series across a voltage source that has voltage a
Nataly [62]

For an AC circuit:

I = V/Z

V = AC source voltage, I = total AC current, Z = total impedance

Note: We will be dealing with impedances which take on complex values where j is the square root of -1. All phasor angles are given in radians.

For a resistor R, inductor L, and capacitor C, their impedances are given by:

Z_{R} = R

R = resistance

Z_{L} = jωL

ω = voltage source angular frequency, L = inductance

Z_{C} = -j/(ωC)

ω = voltage source angular frequency, C = capacitance

Given values:

R = 217Ω, L = 0.875H, C = 6.75×10⁻⁶F, ω = 220rad/s

Plug in and calculate the impedances:

Z_{R} = 217Ω

Z_{L} = j(220)(0.875) = j192.5Ω

Z_{C} = -j/(220×6.75×10⁻⁶) = -j673.4Ω

Add up the impedances to get the total impedance Z, then convert Z to polar form:

Z = Z_{R} + Z_{L} + Z_{C}

Z = 217 + j192.5 - j673.4

Z = (217-j480.9)Ω

Z = (527.6∠-1.147)Ω

Back to I = V/Z

Given values:

V = (30.0∠0+220t)V (assume 0 initial phase, and t = time)

Z = (527.6∠-1.147)Ω (from previous computation)

Plug in and solve for I:

I = (30.0∠0+220t)/(527.6∠-1.147)

I = (0.0569∠1.147+220t)A

To get the voltages of each individual component, we'll just multiply I and each of their impedances:

v_{R} = I×Z_{R}

v_{L} = I×Z_{L}

v_{C} = I×Z_{C}

Given values:

I = (0.0569∠1.147+220t)A

Z_{R} = 217Ω = (217∠0)Ω

Z_{L} = j192.5Ω = (192.5∠π/2)Ω

Z_{C} = -j673.4Ω = (673.4∠-π/2)Ω

Plug in and calculate each component's voltage:

v_{R} = (0.0569∠1.147+220t)(217∠0) = (12.35∠1.147+220t)V

v_{L} = (0.0569∠1.147+220t)(192.5∠π/2) = (10.95∠2.718+220t)V

v_{C} = (0.0569∠1.147+220t)(673.4∠-π/2) = (38.32∠-0.4238+220t)V

Now we have the total and individual voltages as functions of time:

V = (30.0∠0+220t)V

v_{R} = (12.35∠1.147+220t)V

v_{L} = (10.95∠2.718+220t)V

v_{C} = (38.32∠-0.4238+220t)V

Plug in t = 22.0×10⁻³s into these values and take the real component (amplitude multiplied by the cosine of the phase) to determine the real voltage values at this point in time:

V = 30.0cos(0+220(22.0×10⁻³)) = 3.82V

v_{R} = 12.35cos(1.147+220(22.0×10⁻³)) = 11.8V

v_{L} = 10.95cos(2.718+220(22.0×10⁻³)) = 3.19V

v_{C} = 38.32cos(-0.4238+220(22.0×10⁻³)) = -11.2V

4 0
3 years ago
Which statement best describes the benefits that would make the investment worthwhile?
Nadya [2.5K]
<span>Fusion produces large amounts of energy, and the fuel is found on Earth.</span>
4 0
3 years ago
Read 2 more answers
How potential and kinetic energy changed during the spacecraft launches.
LenaWriter [7]

Answer:

Have a blessed day!

Explanation:

The energy to launch the spacecraft came from moving the spacecraft against the magnetic force. The energy used to move a magnet against a magnetic force is stored as potential energy in the magnetic field. This magnetic force can convert potential energy stored in the magnetic field to kinetic energy.

Please give brainliest!

4 0
2 years ago
Read 2 more answers
Other questions:
  • The roller-coaster car shown in fig. 6-41 (h1 = 30 m, h2 = 12 m, h3 = 20 m), is dragged up to point 1 where it is released from
    8·1 answer
  • What is compression?
    10·2 answers
  • An airplane wing is designed so that the speed of the air across the top of the wing is 255 m/s when the speed of the air below
    13·1 answer
  • The ____________is a metal retainer that keeps the rolling elements evenly spaced. N A. seal N B. separator N C. bearing N D out
    8·1 answer
  • You drive a car 1600 ft to the east, then 2500 ft to the north. The trip took 2.5 minutes. What was the magnitude of your averag
    8·1 answer
  • Write the importance of international bureau of weights and measurement.​
    15·1 answer
  • A 71.5 kg football player is gliding across very smooth ice at 2.00 m/s . He throws a 0.470 kg football straight forward. What i
    7·1 answer
  • What is a core sample?
    8·1 answer
  • *
    5·1 answer
  • Friction is a ____________ force<br> a. Artificial<br> b. Natural<br> c. Pessimistic<br> d. Negative
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!