Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.
I found this!! maybe this will help :)
Answer:
The liquid turns to a gas.
Explanation:
If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. Particles in the middle of the liquid form bubbles of gas in the liquid.
Answer:
<h2>1116.9 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 438 × 2.55
We have the final answer as
<h3>1116.9 N</h3>
Hope this helps you