The cars velocity after it travels 20 m is 4 because you have to divide it by the miles that the car is traveling and the 4 miles from the rest; and your finally answer being 5
Answer: 5
Answer:

Explanation:
The resistance of a wire is given by the equation:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
In this problem, we have a wire of platinoid, whose resistivity is

The length of the wire is
L = 7.0 m
And its radius is
, so the cross-sectional area is

Solving for R, we find the resistance of the wire:

Answer:
a) 138.6 m/s
b) 762.3 m
c) 122.3 m/s
d) 24.47
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Velocity at the end of its upward acceleration is 138.6 m/s

Maximum height the rocket reaches is 762.3 m

The velocity with which the rocket crashes to the Earth is 122.3 m/s

Total time from launch to crash is 12.47+11 = 24.47 seconds