1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
4 years ago
7

two charges + 2.6 uc and -5.4uc experience an attractive force of 6.5mN. What is the separation between the charges?

Physics
1 answer:
djyliett [7]4 years ago
7 0

Answer:

...

Explanation:

....

You might be interested in
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
3 years ago
A small boat sailed straight north out of a harbor in strong east wind (blowing from west to east). After sailing for 120 minute
Amiraneli [1.4K]

it can be said that  the speed of the east wind is

v=0.3608m/s

From the question we are told

A small boat sailed <u>straight </u>north out of a harbor in <em>strong </em>east wind (blowing from west to east).

After sailing for 120 minutes, it ended up hitting a buoy 60^\circ60 ∘ to the north-east of the harbor. If the straight-line distance between the buoy and the harbor is 3 km,

  • what is the speed of the east wind?.

<h3> the speed of the east wind</h3>

Generally the equation for the distance  is mathematically given as

BA=3000sin60

BA=2598.07m

Therefore

the speed of the east wind

V_w=\frac{BA}{120*60}\\\\V_w=\frac{2598.07}{120*60}

v=0.3608

For more information on this visit

brainly.com/question/22568180

7 0
2 years ago
Electric energy can be transferred into other types of energy we often experiences transformation of energy in our every day liv
Damm [24]

An amplifier.

Electrical energy provided to an amplifier is converted into sound energy as it is "fed" or provided to the speaker portion of an amplifier.

7 0
3 years ago
If the mass of a person is 600kg on Earth what is the persons mass on the moon
nika2105 [10]

Answer:

The mass of the person would remain 600kg.

Explanation:

mass refers to the amount of matter in a particular object. therefore even though the moon has less gravitational force than the Earths, it still would have the same mass since the person is made up of the same amount of matter on Earth and in the moon.

when asked about weight, it would be 1000N. but in mass , same 600kg.

3 0
3 years ago
A student team is to design a human powered submarine for a design competition. The overall length of the prototype submarine is
Allushta [10]

Answer:

a) The speed is 61.42 m/s

b) The drag force is 10.32 N

Explanation:

a) The Reynold´s number for the model and prototype is:

Re_{m} =\frac{p_{m}V_{m}L_{m}   }{u_{m} }

Re_{p} =\frac{p_{p}V_{p}L_{p}   }{u_{p} }

Equaling both Reynold's number:

\frac{p_{p}V_{p}L_{p}   }{u_{p} }=\frac{p_{m}V_{m}L_{m}   }{u_{m} }

Clearing Vm:

V_{m} =\frac{p_{p}V_{p}L_{p} u_{m}   }{u_{p} p_{m} L_{m} }=\frac{999.1*0.56*8*1.849x10^{-5} }{1.138x10^{-3}*1.184*1 } =61.42m/s

b) The drag force is:

\frac{F_{Dm} }{p_{m}V_{m}^{2}L_{m}^{2}     } =\frac{F_{Dp} }{p_{p}V_{p}^{2}L_{p}^{2}     } \\F_{Dp} =\frac{F_{Dp}p_{p}V_{p}^{2}L_{p}^{2} }{p_{m}V_{m}^{2}L_{m}^{2}     } \\F_{Dp}=\frac{2.3*999.1*0.56^{2} *8^{2} }{1.184*61.42^{2}*1^{2}  } =10.32N

6 0
3 years ago
Read 2 more answers
Other questions:
  • Refraction occurs when a wave changes its A) color. B) frequency. C) intensity. D) speed.
    14·2 answers
  • The slope of the line tangent to the curve on a position-time graph at a specific time is the
    11·1 answer
  • Explain how you can change your workout routine using each of the SPORT and FITT principles.
    15·1 answer
  • The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 9.1 kN. Determine the requ
    6·1 answer
  • To increase the current in a circuit, the BLANK<br> can be increased. HELP ASAP
    11·2 answers
  • Which number is not found on the periodic table​
    14·1 answer
  • Substance A has a higher heat capacity than substance B. If the same amount of heat is added to both substances, which substance
    10·2 answers
  • 3) Ęplain why muddy water is<br> Heterogeneous<br> mixture
    15·1 answer
  • A bowling ball rolled with a force of 20 N accelerates at a rate of 5 m/sec2, a second ball rolled with the same force accelerat
    7·1 answer
  • If you swing an object on the end of a string around a circle, the string pulls on the object to keep it moving in a circle. Wha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!