Answer:
Even the most powerful light-focusing microscopes can't visualise single atoms. What makes an object visible is the way it deflects visible light waves. Atoms are so much smaller than the wavelength of visible light that the two don't really interact. To put it another way, atoms are invisible to light itself.
Explanation:
Can you give me Brainliest pls
And Your welcome :)
Hello!
If the reaction could be made to go faster B. The hill would be shorter.
The "hill" is called Activation Energy. It is the energy of the activated intermediate compound needed to complete the reaction. Catalysts are substances that don't intervene in the reaction which speed up the rate of a given reaction by lowering the Activation Energy giving alternate reaction pathways with lower-energy intermediates. If the reaction could be made to go faster with the use of a catalyst, then the Activation Energy would be lower and the "hill" would be shorter.
Have a nice day!
Nonane (b) has the highest melting point.
-----------------------------
A caveat: I'm assuming that we're dealing with the straight-chain isomers of these alkanes (specifically pentane and nonane). The straight-chain isomer of pentane (<em>n</em>-pentane, CH3-[CH2]3-CH3) has a melting point of -129.8 °C; the straight-chain isomer of nonane (<em>n-</em>nonane, CH3-[CH2]7-CH3) has a melting point of -53.5 °C. The pattern holds as you go down (or up): The more carbon atoms, the higher the melting point. So, in decreasing order of melting points here, you'd have the following: nonane > pentane > butane > ethane.
However, one structural isomer of pentane, neopentane, has a melting point of -16.4 °C, which is <em>higher </em>that the melting point of <em>n</em>-nonane despite neopentane having the same molecular formula as its straight-chain isomer. Of course, you're not to blame for coming up with this question; this is just some extra info to keep in mind.
90 degrees
As temperature increases, rate of reaction increases :)