Write the equation for the reaction and balance it. In this case the equation is: 2NaOH + H2SO4 → Na2SO4 + 2H2O
Convert the given amount to moles. Molarity, “M” is moles per liter. The given amount is 25 ml of 1.2 M H2SO4. Since Molarity uses Liters, the volume must be converted from ml to L.
Use the mole ratio in this case 2 moles of NaOH to ! mole of H2SO4
Convert the moles to the required units. In this case the required units are grams. The formula weight in grams er mole.
25 ml H2SO4 * 1L/1000 ml * 1.2 Moles/L * 2 moles NaOH/1 mole H2SO4 * 40 g NaOH/ 1 Mole NaOH
Perform these calculations and you have the answer! Timothy, When doing homework, the answer is NOT the important thing, the METHOD is! These 4 steps, combined with required changes in units will sove ANY stoichiometric problem easily.
Hey there!
<span>The extreme conditions in the Earth's interior.
4.1.13
</span>
Hope this helps!
~~Cutelion918~~
I am pretty sure nitrogen would be the solvent because solvents are generally the larger amount
SOLVENT- A substance (usually a liquid) capable of dissolving one or more pure substances. SOLUTE- Solid, liquid or gas that is dissolved in a solvent. SOLUTION- A homogeneous (looks the same throughout) mixture of a solvent and one or more solutes. AQUEOUS SOLUTION- Solution in which water is the solvent.
Answer
it raises the boiling point substance is dissolved in water
<u>Answer:</u> The final temperature of the gas is -220.6°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
![P_1=6atm\\T_1=-33^oC=[273-33]K=240K\\P_2=1.31atm\\T_2=?](https://tex.z-dn.net/?f=P_1%3D6atm%5C%5CT_1%3D-33%5EoC%3D%5B273-33%5DK%3D240K%5C%5CP_2%3D1.31atm%5C%5CT_2%3D%3F)
Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the final temperature of the gas is -220.6°C