As the atmospheric pressure is, P = dgh
Here d is the density of the mercury,
g is gravitation = 9.8 m/s²
h is height of the column, P = 751 torr = (751 torr × 1 atm / 760 torr) (101325 Pa) (1 N/m² / 1 Pa) = 100125 N/m²
Where, 1 N = 1 Kg / ms²
Thus, P = 100125 Kg / m³. s²
Therefore, height of the mercury column, when the atmospheric pressure is 751 torr,
h = P / gd
= (100125 kg / m³. s²) / (9.8 m/s²) (13.6 × 10³ kg / m³) = 0.751 m
As, d₁h₁ = d₂h₂
Here, d₁ is the density of the non-volatile liquid = 1.20 g/ml
d₂ is the density of the mercury = 13.6 g/ml
h₂ = 0.751 m
Thus, putting the values we get,
h₁ = d₂h₂ /d₁ = 13.6 g/ml × 0.751 m / 1.20 g/ml
= 8.5 m