The answer is (2) A bond is formed and energy is released. The left side of equation is I atom and the right side of equation is I2 molecule. So the bond is formed between I atom to form I2 molecule. And forming bond will release energy while breaking bond will absorb energy.
Answer:
A potassium atom (atomic number 19) and a bromine atom (atomic number 35) can form a chemical bond through a transfer of one electron. The potassium ion that forms has 18 electrons. What best describes the bromide ion that forms? It is a negative ion that has one more valence electron than a neutral bromine atom.
Explanation:
Answer:
pH = 8.34
Explanation:
The equilbriums of the amphoteric HCO₃⁻ (Ion of NaHCO₃) are:
H₂CO₃ ⇄ <em>HCO₃⁻</em> + H⁺ Ka1 <em>-Here, HCO₃⁻ is acting as a base-</em>
<em>HCO₃⁻</em>⇄ CO₃²⁻ + H⁺ Ka2 <em>-Here, is acting as an acid-</em>
Where Ka1 = 4.3x10⁻⁷ and Ka2 = 4.8x10⁻¹¹. As pKa = -log Ka:
pKa1 = 6.37; pKa2 = 10.32
As the pH of amphoteric salts is:
pH = (pKa1 + pKa2) / 2
<h2>pH = 8.34</h2>
Complete Question
49.9 ml of a 0.00292 m stock solution of a certain dye is diluted to 1.00 L. the diluted solution has an absorbance of 0.600. what is the molar absorptivity coefficient of the dye
Answer:
The value is
Explanation:
From the question we are told that
The volume of the stock solution is
The concentration of the stock solution is 
The volume of the diluted solution is 
The absorbance is 
Generally the from the titration equation we have that

=> 
=> 
Generally from Beer's law we have that

=> 
Here l is the length who value is 1 cm because the unit of molar absorptivity coefficient of the dye is 
So
=>
Molar mass H₂O = 18.0 g/mol
number of moles :
1.0 / 18.0 => 0.055 moles
1 mole -------------- 6.02 x 10²³ molecules
0.055 moles -------- ? molecules
molecules = 0.055 x ( 6.02 x 10²³) / 1
molecules = 3.311x10²² / 1
= 3.311 x 10²² molecules
hope this helps!