All of the above answers are true right answer is option D
because, no bond no molecule no interaction no life,
no bond= only element will exist
Energy would not exist coz energy consumption and excretion takes place during bond formation and bond breaking process!
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
Answer:
chemical, is the answer your looking for
Answer:
pH = 8.34
Explanation:
The equilbriums of the amphoteric HCO₃⁻ (Ion of NaHCO₃) are:
H₂CO₃ ⇄ <em>HCO₃⁻</em> + H⁺ Ka1 <em>-Here, HCO₃⁻ is acting as a base-</em>
<em>HCO₃⁻</em>⇄ CO₃²⁻ + H⁺ Ka2 <em>-Here, is acting as an acid-</em>
Where Ka1 = 4.3x10⁻⁷ and Ka2 = 4.8x10⁻¹¹. As pKa = -log Ka:
pKa1 = 6.37; pKa2 = 10.32
As the pH of amphoteric salts is:
pH = (pKa1 + pKa2) / 2
<h2>pH = 8.34</h2>