Five over there to the power of negative two is
Three squared over five squared
Which is 9 over 25
Answer: 93
Step-by-step explanation:
Exterior angle equal sum of two interior anAngeles
Step-by-step explanation:
![\sqrt[8]{ {x}^{2} {y}^{6} } \\ \\ = ( {x}^{2} {y}^{6} )^{ \frac{1}{8} } \\ \\ = {x}^{2 \times \frac{1}{8}} {y}^{6\times \frac{1}{8}} \\ \\ = x^{\frac{1}{4}} {y}^{3\times \frac{1}{4}} \\ \\ = x^{\frac{1}{4}} {y}^{\frac{3}{4}} \\ \\ = \sqrt[4]{x {y}^{3} } \\](https://tex.z-dn.net/?f=%20%5Csqrt%5B8%5D%7B%20%7Bx%7D%5E%7B2%7D%20%20%7By%7D%5E%7B6%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%28%20%7Bx%7D%5E%7B2%7D%20%7By%7D%5E%7B6%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B2%20%5Ctimes%20%5Cfrac%7B1%7D%7B8%7D%7D%20%7By%7D%5E%7B6%5Ctimes%20%5Cfrac%7B1%7D%7B8%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%7By%7D%5E%7B3%5Ctimes%20%5Cfrac%7B1%7D%7B4%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%7By%7D%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%20%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%20%5Csqrt%5B4%5D%7Bx%20%7By%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20)
Answer:
a) False
b) False
c) True
d) False
e) False
Step-by-step explanation:
a. A single vector by itself is linearly dependent. False
If v = 0 then the only scalar c such that cv = 0 is c = 0. Hence, 1vl is linearly independent. A set consisting of a single vector v is linearly dependent if and only if v = 0. Therefore, only a single zero vector is linearly dependent, while any set consisting of a single nonzero vector is linearly independent.
b. If H= Span{b1,....bp}, then {b1,...bp} is a basis for H. False
A sets forms a basis for vector space, only if it is linearly independent and spans the space. The fact that it is a spanning set alone is not sufficient enough to form a basis.
c. The columns of an invertible n × n matrix form a basis for Rⁿ. True
If a matrix is invertible, then its columns are linearly independent and every row has a pivot element. The columns, can therefore, form a basis for Rⁿ.
d. In some cases, the linear dependence relations among the columns of a matrix can be affected by certain elementary row operations on the matrix. False
Row operations can not affect linear dependence among the columns of a matrix.
e. A basis is a spanning set that is as large as possible. False
A basis is not a large spanning set. A basis is the smallest spanning set.
Answer:41
Step-by-step explanation: Multiplication and division goes first so 8x5=40 12x1/3=4 so 40-4+5 and you do addition and subtraction left to right 40-4=36+5=41