As we know that 760 mmHg is equal to 1 atm.
So,
If 760 mmHg is equal to = 1 atm
Then
738 mmHg will be equal to = X atm
Solving for X,
X = (738 mmHg × 1 atm) ÷ 760 mmHg
X = 0.971 atm
Result:
738 mmHg is equal to 0.971 atm.
<span>The appropriate response is filtration. Filtration is any of different mechanical, physical or organic operations that different solids from liquids by including a medium through which just the liquid can pass. The liquid that goes through is known as the filtrate</span>
Answer:
Molarity = 2.3 M
Explanation:
Molarity can be calculated using the following rule:
Molarity = number of moles of solute / volume of solution
1- getting the number of moles:
We are given that:
mass of solute = 105.96 grams
From the periodic table:
atomic mass of carbon = 12 grams
atomic mass of hydrogen = 1 gram
atomic mass of oxygen = 16 grams
Therefore:
molar mass of C2H6O = 2(12) + 6(1) + 16 = 46 grams
Now, we can get the number of moles as follows:
number of moles = mass / molar mass = 105.96 / 46 = 2.3 moles
2- The volume of solution is given = 1 liter
3- getting the molarity:
molarity = number of moles of solute / volume of solution
molarity = 2.3 / 1
molarity = 2.3 M
Hope this helps :)
Answer:
The correct answer is - 5 carbon compounds due to low to high intermolecular forces between their molecules.
Explanation:
Bottle C has gas in it and we know that alkane has carbon and hydrogen only which means they have a single sigma bond between them and very low intermolecular forces in between molecules and are present mostly at gaseous state. Thus, bottle C has alkane.
Alcohols have -OH group that can form rarely two pi bonds which means they have intermediate intermolecular force whereas acids have -cooH group with a high molecular force so bottle B with liquid is alcohol and A has acid.
Answer:
Element Lithium
Explanation:
The element with the highest second ionization energy is lithium. It belongs to the alkaline metal group I.e group one metals
It has the highest second ionization energy because it is very difficult to remove the electron from the 1s orbital.
Its atomic number is 3. The electronic configuration is 1s2 2S1