Given teh equation adn the heat of reaction, reaction 2's heat of reaction can be obtained by simply multiplying teh heat of reaction of 1 by 3. The final answer is -6129 kJ.
Answer:
94.44
Explanation:
Volume is equal to Mass/Density so therefore, you do the mass which is 68.0 g/0.72 g/mL which is the density and get 94.44 mL because the g cancel each other out when it comes to the label!
The mass of water decomposed to produce 50 g oxygen has been 56.28 g. Thus, option D is correct.
The reaction for the decomposition of water has been:

From the balanced equation, 2 moles of water decomposes to form 1 moles of hydrogen and 1 mole of oxygen.
The mass of oxygen produced has been 50 g. The moles of oxygen has been given by:

The moles of oxygen has been:

The moles of oxygen produced has been 1.5625 mol.
The moles of hydrogen decomposed has been given from the balanced chemical equation as:

The moles of hydrogen decomposes has been 3.125 mol.
The mass of hydrogen decomposed has been given by:

The mass of water decomposed to produce 50 g oxygen has been 56.28 g. Thus, option D is correct.
For more information about moles produced, refer to the link:
brainly.com/question/10606802
Answer: E. none of these
Explanation: because the f-block element is n-2