Answer:
causes a substance to change from a liquid to a solid.
Explanation:
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
Answer:
use n=m/M (moles=mass/molar mass) to find out how many moles of C2H6 there are in 60g
Explanation: