Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]
Compounds Na₂SO₄ and NaCl are mixed together are we are asked to find the concentration of Na⁺ in the mixture
Na₂SO₄ ---> 2 Na⁺ + SO₄³⁻
1 mol of Na₂SO₄ gives out 2 mol of Na⁺ ions
the number of Na₂SO₄ moles added - 0.800 M/1000 * 100 ml
= 0.08 mol
therefore number of Na⁺ ions from Na₂SO₄ = 0.08 * 2 = 0.16 mol
NaCl ----> Na⁺ + Cl⁻
1 mol of NaCl gives 1 mol of Na⁺ ions
number of NaCl moles added = 1.20 M/1000 * 200 ml
= 0.24 mol
number of Na⁺ ions from NaCl = 0.24 mol
total number of Na⁺ ions in the mixture = 0.16 mol + 0.24 mol = 0.4 mol
as stated the volumes are additive,
therefore total volume = 100 ml + 200 ml = 300 ml
the concentration of Na⁺ ions = number of moles / volume
= 0.4 mol/ 0.3 dm³
concentration of Na⁺ = 1.33 mol/dm³
Yes, Titan is bigger than Mercury. So basically, it's true.
<span>4 degrees C is when it is at its highest density
</span>