You mean simplify it? I don’t see how this is a physics question.
Answer:
<em>1.11m</em>
Explanation:
From the diagram we are given the following forces;
F1 = 24.3N
F3 = 30N
Since the sum of upward forces is equal to that of downward force, then;
F2 = F1 + F3
F2 = 24.3N + 30N
F2 = 54.3N
Required
Distance between B and C
First we need to get Length of AC
Take moment about A
Anticlockwise moment = F3 cos20 * AC
Anticlockwise moment = 30ACcos 20
Clockwise moment = 1.2 * F2
Clockwise moment = 1.2(54.3) = 65.16Nm
Applying the principle of moment;
Sum of ACW moment = Sum of CW moments
30ACcos 20 = 65.16
AC = 65.16/30cos20
AC = 65.16/28.19
AC = 2.31m
Get the distance BC
AC = AB + BC
BC = AC-AB
BC = 2.31 - 1.2
BC = 1.11m
Hence the separation between B and C is 1.11m
<em>Note that the force F1 got in (a) was the value used in the calculation.</em>
<em></em>
Answer:
x coordinate = -1.66 m
y coordinate is = -0.825m
Explanation:
Suppose z be the distance form the first charge and z + sqrt(1^2 +.5^2) be the distance from the second So z + sqrt(1+.25) = z + 1.12
We have k*2.0x10^-6/s^2 = k*6x10^-6/(s+1.12)^2
0.0356s^2 -0.019s-0.0897=0
s=1.876m
The angle of the line between the two charges is arctan(.5/1) = 26.6o
x coordinate = -1.876*cos(26.6) = -1.66m
y coordinate is -1.876*sin(26.6) = -0.825m
To solve the problem it is necessary to apply the Torque equations and their respective definitions.
The Torque is defined as,

Where,
I=Inertial Moment
Angular acceleration
Also Torque with linear equation is defined as,

Where,
F = Force
d= distance
Our dates are given as,
R = 30 cm = 0.3m
m = 1.5 kg
F = 20 N
r = 4.0 cm = 0.04 m
t = 4.0s
Therefore matching two equation we have that,

For a wheel the moment inertia is defined as,
I= mR2, replacing we have





Then the velocity of the wheel is

Therefore the correct answer is D.
<span>During
an investigation, a student determines that a copper sample has a
density of 8.10 g/ml. What is the students percent error of the accepted
density for copper is 8.96 g/ml
</span>