Answer:
Ice and water on the ground affect incoming solar radiation by reflecting 4 percent of solar radiation that reaches the surface. ... When the sun angle is high and water is liquid notice, there is less reflection that takes place.
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
3.0 × 10¹¹ RBC's (or) 3E11 RBC's
Solution:
Step 1: Convert mm³ into L;
As,
1 mm³ = 1.0 × 10⁻⁶ Liters
So,
0.1 mm³ = X Liters
Solving for X,
X = (0.1 mm³ × 1.0 × 10⁻⁶ Liters) ÷ 1 mm³
X = 1.0 × 10⁻⁷ Liters
Step 2: Calculate No. of RBC's in 5 Liter Blood:
As given
1.0 × 10⁻⁷ Liters Blood contains = 6000 RBC's
So,
5.0 Liters of Blood will contain = X RBC's
Solving for X,
X = (5.0 Liters × 6000 RBC's) ÷ 1.0 × 10⁻⁷ Liters
X = 3.0 × 10¹¹ RBC's
Or,
X = 3E11 RBC's
Answer:
The pH of a solution is a measure of the molar concentration of hydrogen ions in the solution and as such is a measure of the acidity or basicity of the solution.
Answer:
0.289J of heat are added
Explanation:
We can relate the change in heat of a substance with its increasing in temperature using the equation:
q = m*ΔT*S
<em>Where Q is change in heat</em>
<em>m is mass of substance (In this case, 0.0948g of water)</em>
<em>ΔT = 0.728°C</em>
<em>S is specific heat (For water, 4.184J/g°C)</em>
Replacing:
q = 0.0948g*0.728°C*4.184J/g°C
q = 0.289J of heat are added