Rubber, because it doesn’t conduct heat and it is a good insulator
I am pretty sure the answer is . But I might be wrong.
Temperature, cloud cover and thunder are all examples of weather.
<h3><u>Explanation:</u></h3>
Weather is described as conditions that prevail for a short period of time and the above-mentioned factors change variably throughout the day. Cloud cover simply describes the clouds coverage in the sky. It is one factor that is used to describe weather conditions since the type of clouds indicates prevailing weather.
For example, the presence of cirrus means there will be a storm in 24 to 48 hours. Weather conditions characterized by thunder is said to be stormy and it also has other conditions such as lightning, wind and fast rain with heavy raindrops. Temperature affects the warmness and coldness of the air and its movement. Moreover, it also affects all other aspects of weather conditions.
Answer:
2.288 Moles of NH₄NO₃
Explanation:
The Balance chemical equation is as follow:
(NH₄)₂CO₃ + 2 HNO₃ → 2 NH₄NO₃ + H₂O + CO₂
To solve this problem we will do following steps:
Finding moles of Ammonium Carbonate:
As we know,
Moles = Mass / M.Mass
So,
Moles = 110 g / 96.08 g/mol
Moles = 1.144 moles
Calculating moles of Ammonium Nitrate:
According to balance chemical equation;
1 mole of (NH₄)₂CO₃ produces = 2 moles of NH₄NO₃
So,
1.144 moles of (NH₄)₂CO₃ will produce = X moles of NH₄NO₃
Solving for X,
X = 2 moles × 1.144 moles ÷ 1 mole
X = 2.288 moles of NH₄NO₃
Options are as follow,
A) <span>Constant volume, no intermolecular forces of attraction,energy loss in collisions
B) </span><span>No volume, strong intermolecular forces of attraction, perfectly elastic collisions
C) </span><span>Constant volume, no intermolecular forces of attraction, energy gain during collisions
D) </span><span>No volume, no intermolecular forces of attraction, perfectly elastic collisions
Answer:
Option-D (</span>No volume, no intermolecular forces of attraction, perfectly elastic collisions) is the correct answer.
Explanation:
As we know there are no interactions between gas molecules due to which they lack shape and volume and occupies the shape and volume of container in which they are kept. So, we can skip Option-B.
Secondly we also know that the gas molecules move randomly. They collide with the walls of container causing pressure and collide with each other. And these collisions are perfectly elastic and no energy is lost or gained during collisions. Therefore Option-A and C are skipped.
Now we are left with only Option-D, In option D it is given that ideal gas has no volume. This is true related to Ideal gas as it is stated in ideal gas theories that molecules are far apart from each other and the actual volume of gas molecules compared to volume of container is negligible. Hence, for ideal gas Option-D is a correct answer.