Answer:
jjjjajwhejwhswjiwiwvssvwvow9qiwgdvdbslw
Answer:
0.877 mol
Step-by-step explanation:
We can use the<em> Ideal Gas Law </em>to solve this problem.
pV = nRT Divide both sides by RT
n = (pV)/(RT)
Data:
p = 646 torr
V = 25.0 L
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = 22.0 °C
Calculations:
(a) <em>Convert the pressure to atmospheres
</em>
p = 646 torr × (1 atm/760 torr) = 0.8500 atm
(b) <em>Convert the temperature to kelvins
</em>
T = (22.0 + 273.15) K = 295.15 K
(c) <em>Calculate the number of moles
</em>
n = (0.8500 × 25.0)/(0.082 06 × 295.15)
= 0.877 mol
Answer:
Yesssss i really don't wanna go back to school
Answer:
option C= hydrolysis and break down
Explanation:
All other three pairs are correct coupling of each others.
Option A= dehydration synthesis and hydrolysis
Dehydration synthesis:
In dehydration synthesis monomers combine through the covalent bonds and form large molecules. The large molecules are called polymers. The water as a byproduct also released when monomers joints together.
Hydrolysis:
In hydrolysis the polymers are break down into monomers by using water molecules. The catalysts are also required in this process.
Option B= Catabolic and Anabolic
Anabolic:
In this process smaller molecules combine to gather to form large complex molecules by using energy.
For example simple glucose molecules join together to form large disaccharides.
Catabolic:
It is the break down of large complex molecules to the smaller molecules.
For example during cellular respiration sugar molecules break down and generate energy.
Option D= Break down and synthesis
The break down and synthesis are also reverse pair of each others. The synthesis involve the formation of molecules form smaller component while the break down involve destruction of molecules into smaller units.